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Abstract

Shifting level models have been suggested in the literature since the late 1970’s for stochastic simulation of streamflow data.

Parameter estimation for these models has been generally based on the method of moments. While this estimation approach has

been useful for simulation studies, some limitations are apparent. One is the difficulty of evaluating the uncertainty of the model

parameters, and another one is that the proposed model is not amenable to forecasting because the underlying mean of the

process, which changes with time, is not estimated. In this paper, we reformulate the original shifting level model to conform to

the so-called Hidden Markov Chain models (HMMs). These models are increasingly used in applied statistics and techniques

such as Monte-Carlo Markov chain, and in particular Gibbs sampling, are well suited for estimating the parameters of HMMs.

We use Gibbs sampling in a Bayesian framework for parameter estimation and show the applicability of the reformulated

shifting level model for detection of abrupt regime changes and forecasting of annual streamflow series. The procedure is

illustrated using annual flows of the Senegal River in Africa.
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1. Introduction

Stochastic modeling of hydrologic time series has

been widely used for planning and management of

water resources systems such as for reservoir sizing

and forecasting the occurrence of future hydrologic

events (Salas et al., 1980; Loucks et al., 1981; Bras

and Rodrigues-Iturbe, 1985; Hipel and McLeod,

1994). For example, stochastic models are used to

generate synthetic series of water supply that may

occur in the future which are then utilized for

estimating the probability distribution of key decision

parameters such as reservoir storage size. Likewise,

stochastic models may be utilized for forecasting

water supplies and water demands days, weeks,

months, and years in advance. In turn, the forecasts

are used in planning and testing operating rules, in

estimating future power output of hydroelectric

systems, and during real-time systems’ operations.

A number of stochastic models has been considered

in the literature for synthetic generation and forecast-

ing of hydrological processes (Bras and Rodrigues-I-

turbe, 1985; Salas, 1993; Hipel and McLeod, 1994).
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Hydrologic processes such as annual streamflow and

precipitation in some cases may be well represented by

stationary linear models such as autoregressive (AR)

and autoregressive moving average (ARMA) models.

These models are usually capable of preserving the

historical annual statistics, such as the mean, variance,

skewness, and covariance. However, Hurst (1951)

analyzed a large number of geophysical records and

discovered that certain climatic and hydrologic records

showed some evidence of long-term persistence. Even

though ARMA models may preserve long-term related

statistics such as storage and drought related statistics

(O’Connell, 1971; Salas et al., 1979), alternative

models such as the Fractional Gaussian Noise

(Mandelbrot and Wallis, 1969), Broken Line (Rodri-

guez-Iturbe et al., 1972; Curry and Bras, 1978),

Shifting Level (Klemes, 1974; Potter, 1976; Salas

and Boes, 1980), and FARMA (Montanari et al., 1997)

have been proposed in literature.

Many recent atmospheric and oceanic studies have

shown that hydroclimatic processes exhibit abrupt

shifting patterns (Yonetani and Gordon, 2001; Rial

et al., 2004; Christiansen, submitted; Sveinsson et al.,

2003; Schwing et al., 2003). The Shifting Level (SL)

model is capable of simulating shifting streamflow

patterns explicitly. It has been successfully applied for

simulating net basin supplies of the Great Lakes

System (Rassam et al., 1992) and annual streamflow

series in the Quebec region in Canada (Salas, 2000).

However, no forecasting procedure based on the SL

model is available. In this paper, we develop the

mathematical framework and estimation procedures

for forecasting applications of the SL model.

Considerable research has been carried out in

hydrology on developing mathematical tools and

approaches for short- and long-term streamflow

forecasting. Forecasting of hydrologic processes has

been developed using similar approaches as for

simulation, although many models and techniques

are unique for either simulation or forecasting (Valdes

et al., 2002). In any case, these models must take into

account the uncertainty in the model parameters that

arises because of insufficient historical data of the

relevant processes under consideration. Bayesian

analysis (Bernardo and Smith, 1994) offers a frame-

work in which it is straightforward to issue probabil-

istic forecasts that take into account the uncertainty in

the model parameters. Bayesian methods are often

regarded as more difficult to implement than classical

approaches to parameter estimation, such as the

method of moments and the method of maximum

likelihood. However, for a large class of models,

efficient numerical methods are now available for use

in Bayesian analysis.

We show in this paper that the SL model belongs to

the class of hidden Markov-chain models (HMMs).

Monte-Carlo Markov chain (MCMC) methods, and in

particular Gibbs sampling, are well suited for

estimating the parameters of HMMs in a Bayesian

framework. The Gibbs sampler was originally devel-

oped by Geman and Geman (1984) in the context of

image restoration but Gelfand and Smith (1990)

showed its applicability to general Bayesian statistical

analysis. MCMC methods and HMMs models have

been active areas of basic and applied research in

statistics for many years, and have been gaining

popularity in hydrology. Zucchini and Guttorp (1991)

suggested HMMs for modeling rainfall while Kuczera

and Parent (1998) introduced MCMC methods in the

context of calibrating conceptual watershed models.

Lu and Berliner (1999) used Gibbs sampling to

estimate the parameters of a HMM developed for flow

forecasting at a daily time step, Barreto and de

Andrade (2000) applied MCMC methods to forecast

monthly streamflows with an autoregressive model,

Perreault et al. (2000a,b) used Gibbs sampling for

retrospective analysis of annual flow series with

change-point models, and Thyer and Kuczera (2000,

2003a,b) proposed a two-state HMM for modeling

long-term persistence in annual precipitation series.

This paper also builds upon ideas presented by Fortin

et al. (2002) where Bayesian estimates were proposed

for the parameters of the SL model when the long-

term mean and variance are known.

By definition, HMMs include a hidden Markov

process that is not observed directly. In comparison

with other HMMs, which have been proposed to date

in hydrology, the SL model has the particularity that

the realization of its hidden Markov process (which

corresponds to the local mean of the observed

process) is a continuous variable that takes on values

on the real line, instead of a finite number of values

(typically two or three). As a by-product of the

Bayesian estimation procedure presented in this

paper, together with estimates of the parameters of

the model, one can also estimate the hidden Markov
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process. Thus, the method can also serve to charac-

terize the local mean of the observed process. This

analysis can be used to define dry and wet spells and

to detect abrupt changes in the local mean of the

process, in some sense generalizing the well-known

segmentation method of Hubert et al. (1989), recently

revisited by Kehagias (2004) using the HMM frame-

work.

This paper is organized as follows. In Section 2, we

propose a slightly different parameterization of the SL

model of Salas and Boes (1980) to show that it belongs

to the class of HMMs. In Section 3, we show how the

parameters of the model can be estimated in a Bayesian

framework using Gibbs sampling. In Section 4, we

illustrate the estimation procedure using annual flows

of the Senegal River and show how the Gibbs samples

can be used for forecasting. Section 5 offers a general

discussion on the results obtained and other potential

applications of the suggested approach.

2. Representing the shifting level model as a hidden

Markov model

Salas and Boes (1980) introduced a four-parameter

SL model, which can be used to simulate time series

showing sudden shifts in the mean. The observations

x ¼ ðx1; x2;…; xNÞ are considered to be realizations of

the sum of two independent stochastic processes:

xt ¼ mt þ 1t;mt ’ 1t;

pð1tls2
1Þ ¼ Nð1tl0;s2

1Þ; 1t i:i:d: ð1Þ

where ’ denotes independence between two random

variables, pð·Þ denotes the probability density function

(p.d.f.) of a random variable and Nð·lm;s 2Þ denotes

normal distribution with mean m and variance s 2:

While the term 1t in (1) is a white noise with variance

s 2
1 , the term mt corresponds to the unobserved (or

latent) mean level mt corresponding to each obser-

vation xt; i.e. mt ¼ E½xtlmt�: The mean level is also

normally distributed with mean m and variance s2
m;

but it remains constant for epochs, which duration

follows a geometric distribution. More precisely,

we have:

pðmtlm;s2
mÞ ¼ Nðmtlm;s2

mÞ ð2Þ

Pr½mt ¼ mtþ1 ¼ · · · ¼ mtþk

– mtþkþ1lm1;…;mt21;mtþkþ2;…;mN ;h�

¼ h·ð1 2 hÞk

where h is the parameter of the geometric distribution,

which corresponds to the probability that a transition

to a new mean level occurs at any time point t: The SL

model thus has four parameters: h;s2
1;s

2
m and m: It

can be shown that the process {mt} is a Markov chain.

Indeed, from the properties of the geometric distri-

bution, the probability that an epoch ends at time t is

constant, i.e. independent of t and of the value taken

by the process at any other point in time. This can be

seen by setting k ¼ 0 in (2). Hence, if an epoch ends at

time t then mtþ1 is independent of the previous values

mt ¼ ðm1;m2;…;mtÞ; and if an epoch does not end at

time t then mtþ1 ¼ mt: It follows that the probability

distribution of mtþ1 given mt ¼ ðm1;m2;…;mtÞ

depends only on the value of mt (and on the

parameters of the SL model), which makes the

process {mt} Markovian.

It is readily seen that the expectation of xt is equal

to m; and because of the independence between the

two processes, the variance of xt corresponds to the

sum of the variance of the two processes:

E½xt� ¼ m; var½xt� ¼ s2
m þ s2

1 ð3Þ

Fig. 1 presents a sample of size N ¼ 100 simulated

using the SL process with parameters m ¼ 0;s2
m ¼

s2
1 ¼ 1=2 (hence var½xt� ¼ 1) and h ¼ 0:2: The latent

variables m1;m2;…;mN are plotted in bold, and the

resulting observations x ¼ ðx1; x2;…; xNÞ are rep-

resented by the finer line. The time series seems

almost completely random before the 60th obser-

vation, though there are 12 shifts in the mean level

during that period. Then a shift of considerable

Fig. 1. N ¼ 100 observations simulated from a SL process in which

m ¼ 0;s2
m ¼ s2

1 ¼ 1=2 and h ¼ 0:2:
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amplitude occurs, which lasts for 24 observations,

followed by four more shifts during the last 16 years.

Hence, the pseudo-periodicity caused by the shifting

mean creates a times series, which appears more

‘predictable’ during certain epochs, and more

‘random’ at other times, a feature often associated

with climatic and hydroclimatic time series.

2.1. A different parameterization of the SL model

The fact that two parameters of the SL model must

add up to the total variance of the process {xt} leads to

difficulties when estimating the parameters of the

model in a Bayesian framework, essentially because

the prior distribution of the two variance parameters

s2
1 and s2

m must then be modeled jointly. Indeed, if

anything is known about the scale of the process,

s2
m þ s2

1; then prior information on s2
m sheds some

light on the value of s2
1: Prior dependence between s2

1

and s2
m then leads to difficulties both in the process of

prior information elicitation and in the application of

the numerical method proposed in this paper for

approximating the posterior distribution. For this

reason, it is useful to introduce a slightly different

parameterization of the SL model. Let s 2 ¼ var½xt�

and define v as the ratio s2
m=s

2: We will assume that

0 , s2
m , s 2 so that 0 , v , 1: We can then replace

the parameter s2
m by v·s 2 and the parameter s2

1 by

ð1 2 vÞ·s 2; still leading to a four-parameter para-

meterization of the SL model, i.e. the mean m and

variance s 2 of its stationary distribution, the par-

ameter h; which corresponds to the probability of

observing a transition from a mean level to another at

any instant t; and the parameter v; which can be

interpreted as the proportion of the total variance of

the process {xt}; which is explained by the shifts in the

mean level, represented by process {mt}: Denote the

vector of these four parameters by u ¼ ðm;s 2;v;hÞ:

Again, for estimation purposes it is useful to

associate with each time point t a Bernoulli variable zt

which takes the value 1 if a new7 epoch begins at time

t þ 1 and 0 otherwise. It follows from the properties of

the geometric distribution that the random variables

{zt} are independent and identically distributed

(i.i.d.), with probability of success Pr½zt ¼ 1� ¼

Pr½mt – mtþ1� ¼ h (note that the probability that the

mean level stays the same when a new epoch begins is

zero since s2
m . 0). The variables {zt} do not

introduce additional latent variables into the model,

since each zt is a deterministic function of mt and

mtþ1: Hence, knowledge of mt and mtþ1 implies

perfect knowledge of zt: However, when mt and mtþ1

are not both known, zt remains a random variable.

2.2. Autocorrelation induced by a shifting mean

Salas and Boes (1980) have shown that the

autocorrelation function for the SL model is similar

to that of an ARMA(1,1) process. Indeed, even if

observations are independent within each epoch, the

random shifts in the mean level create dependence

between observations. It can be shown that the

autocorrelation rk between xt and xtþk is a function

of the parameters h and v :

rk ¼ v·ð1 2 hÞk ð4Þ

Proof: By definition, the autocorrelation of order k is

the ratio of the covariance between xt and xtþk to the

variance of the process: rk ¼ covðxt; xtþkÞ=s
2 ¼

covðmt þ 1t;mtþk þ 1tþkÞ=s
2: Covariance being

invariant with respect to white noise: covðmt þ

1t;mtþk þ 1tþkÞ ¼ covðmt;mtþkÞ ¼ E½mt·mtþk�2 m2:

Furthermore, mt and mtþk are equal if no transition

have occurred between time t and time t þ k; and are

independent otherwise. From the properties of

the geometric distribution, the probability that

no shifts occurs between time t and t þ k is

given by g ¼ ð1 2 hÞk: Hence, E½mtmtþk� ¼

E½mtE½mtþklmt�� ¼ E½mtðmtgþ m·ð1 2 gÞÞ�: It fol-

lows that E½mt·mtþk� ¼ g·s2
m þ m2 ¼ g·v·s 2 þ m2

and finally rk ¼ v·g: B

Therefore, persistence in observations from a SL

model decreases exponentially with time in the same

manner as the linear ARMA(1,1) process.

2.3. Joint probability distribution of the observations

and the latent variables

To show that the SL model belongs to the class of

HMMs and to perform the needed Bayesian analysis it

is necessary to obtain the joint probability distribution

of the observations and latent variables. From Eq. (1),

it is straightforward to show that the probability

distribution of xt; given mt is normal, centered at mt
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with variance ð1 2 vÞ·s 2 :

pðxtlmt;uÞ ¼ pðxtlmt;s
2
;vÞ

¼ Nðxtlmt; ð1 2 vÞ·s 2Þ ð5Þ

The variable zt has a Bernouilli distribution defined

by its probability of success: Pr½zt ¼ 0lh� ¼ 1 2 h

and Pr½zt ¼ 1lh� ¼ h: As zt is a discrete variable,

there exists no continuous function pðztlhÞ such that

Pr½zt # klh� ¼
Ðk
21 pðztlhÞdzt: However, to simplify

the notation in the remaining of the paper, it will be

useful to model the uncertainty on zt using an

integrable p.d.f. pðztlhÞ: This can be done through

the use of the Dirac delta function dð·Þ; which verifies

the following properties:

dðx 2 x0Þ ¼ 0 if x – x0;ðb

a
f ðxÞdðx 2 x0Þdx ¼

f ðx0Þ if a , x0 , b

0 otherwise

(
;

ð6Þ

where f is a function continuous at x ¼ x0: It was

introduced by Dirac (1958) as a mathematical artefact

useful to represent singularities in a continuous space,

and is hence very useful to deal with probability

spaces comprised of both continuous and discrete

variables. Notice that by letting f ðxÞ ¼ 1; we can show

that the integral of a Dirac delta function is equal

to one:ð
dðx 2 x0Þdx ¼ 1 ð7Þ

An interesting property of the Dirac delta function

is that it is the derivative of the Heaviside step

function Hðx 2 x0Þ :

dðx 2 x0Þ ¼ H 0ðx 2 x0Þ

Hðx 2 x0Þ ¼
0 if x , x0

1 otherwise

(
ð8Þ

This is useful since the cumulative distribution of a

discrete random variable z which takes real values

k1; k2;…; kJ with probabilities p1; p2;…; pJ can be

written as a weighted sum of Heaviside functions:

FðzÞ ¼
XJ

j¼1

pj·Hðz 2 kjÞ ð9Þ

Hence, the p.d.f. of a discrete random

variable can be expressed by the integrable

function f ðzÞ ¼
PJ

j¼1 pj·dðz 2 kjÞ: It follows that

the p.d.f of zt can be written as:

pðztluÞ ¼ pðztlhÞ ¼h·dðzt 21Þþ ð12hÞ·dðztÞ ð10Þ

The value of the latent variable mtþ1 depends

both on the value of zt and mt : either mtþ1 ¼mt if

zt ¼ 0; or mtþ1 is drawn from a normal distribution

if zt ¼ 1: This can be written as:

pðmtþ1lm1;…;mt;z1;…;zN ;uÞ

¼pðmtþ1lmt;zt;m;s
2
;vÞ

¼ð12ztÞ·dðmtþ12mtÞþzt·Nðmtþ1lm;v·s2Þ ð11Þ

where dð·Þ is once again the Dirac delta function,

needed here to model the distribution of mtþ1 as either a

discrete distribution with a probability mass of one at

mt or a normal distribution centered on m:

For mathematical convenience, the first latent

variable m1 can be considered to have a similar

conditional probability distribution which would

depend on an unknown initial condition m0 as well as

upon a Bernoulli variable z0 which indicates whether or

not m1 – m0: One can show by induction that the

stationary distribution pðmtluÞ ¼ Nðmtlm;v·s 2Þ if:

pðm0luÞ ¼ Nðm0lm;v·s 2Þ ð12Þ

Thus, the stationary distribution of mt is a natural

choice for the distribution of the initial condition

m0: For estimation and forecasting purposes, it will

also be useful to estimate the latent variable mNþ1:

Let m ¼ ðm0;m1;…;mN ;mNþ1Þ and z ¼ ðz0; z1;

z2;…; zNÞ: Combining (5) to (12), we can now

obtain the joint distribution of the observations and

of the latent variables, given the parameters of the

model, which would correspond to the likelihood

function of the model if we could observe the

latent variables. First, note that since the error

terms 1t are i.i.d., the distribution of x given the

latent variables and the parameters is given by the

product of their marginal distributions:

pðxlm;uÞ ¼ pðxlm;s2
;vÞ ¼

YN
t¼1

pðxtlmt;s
2
;vÞ ð13Þ

Note also that since z is a deterministic function

of m;pðxlm;uÞ ¼ pðxlm;z;uÞ: Similarly, since the

Bernoulli variables zt are i.i.d., the distribution of z
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given the parameters is also simply the product of

their marginal distributions:

pðzluÞ ¼ pðzlhÞ ¼
YN
t¼0

pðztlhÞ ð14Þ

By definition of conditional probability, the

joint probability of the sequence m¼ ðm0;m1;…;

mN ;mNþ1Þ given z can be factorized as:

pðmlz;uÞ ¼ pðm0lz;uÞ·
YN
t¼0

pðmtþ1lm0;m1;…;mt;z;uÞ

ð15Þ

However, since pðmtþ1lm0;…;mt;z;uÞ ¼ pðmtþ1l
mt;zt;m;s

2;vÞ; we can write:

pðmlz;uÞ ¼ pðmlz;m;s2
;vÞ

¼ pðm0lm;s2
;vÞ·

YN
t¼0

pðmtþ1lmt;zt;m;s
2
;vÞ

ð16Þ

Combining (13), (14) and (16), the joint

distribution of all the observations and latent

variables, given the parameters, is thus obtained as:

pðx;m; zluÞ ¼ pðxlm;s 2
;vÞ·pðmlz;m;s 2

;vÞ·pðzlhÞ

¼
YN
t¼1

pðxtlmt;s
2
;vÞ·pðm0Þ

�
YN
t¼0

{pðmtþ1lmt; zt;m;s
2
;vÞ·pðztlhÞ}

ð17Þ

2.4. Hidden Markov models

Eq. (17) defines a Hidden Markov Model of order

one (HMM, see Bengio, 1999). In an HMM of order

one, a single state variable, here qt ¼ ðmt; ztÞ;

summarizes all the relevant past information of the

underlying process: it would enable forecasting the

next state, qtþ1 ¼ ðmtþ1; ztþ1Þ and the next obser-

vation, xtþ1: However, the state variable qt is not

observed directly. The joint distribution of an HMM is

specified in terms of:

† the initial state probability distribution, here pðq0l
uÞ ¼ pðm0lm;s 2;vÞ;

† the transition probability distribution, here

pðqtþ1lqt;uÞ ¼ pðmtþ1lmt; zt;m;s
2;vÞ·pðztlhÞ;

† the emission probability distribution, here

pðxtlqt;uÞ ¼ pðxtlmt;s
2;vÞ:

HMMs are often represented graphically using a

Bayesian network, also known as a directed acyclic

graph (DAG), see Spiegelhalter et al. (1996), which

illustrates the relationships between variables in the

model (observations, parameters and latent variables).

Thenodes represent thevariables and theedges between

nodes represent the presence of a direct relationship

between the corresponding variables. Nodes may be

represented in two ways: either as a circle, denoting that

the value of the corresponding variable is unknown and

thus subject to estimation, or by a square in which case

the value of that variable is known.

Fig. 2 presents a DAG corresponding to the SL

model. It can be seen that the model has a hierarchical

structure in which, for every time t; the first level

represents the (possible) transition to a new mean;

then, the second level represents the process which

generates the new mean, given the previous one;

and finally, the last level stands for the generation of

the data, given the mean level. This model formalizes

the belief that the mean level mt depends on the value

of the Bernoulli variable zt21 and on the value of

Fig. 2. Bayesian network representing the relationship between the latent variables and the observations in a SL model.
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the previous mean level mt21: Similarly, the obser-

vation xt depends on the value of mt but is

conditionally independent of the values of mt21 and

zt21: This conditional independence is represented in

the graph by the absence of an edge between nodes

mt21 and xt; and between zt21 and xt: Recognizing that

the SL model is a HMM enables one to take advantage

of estimation methods proposed for the parameters

and latent variables of such models, and in particular

Bayesian methods.

3. Bayesian estimation of the parameters

The first step in a Bayesian analysis is to set up a

full probability model. That is, in addition to

modeling the observable quantities x; a prior

distribution pðuÞ is assumed for the parameters of

the SL model. In the Bayesian perspective, specify-

ing a prior distribution for the parameters is an

integral part of the modeling task, with all

hypotheses that modeling involves. Bayes’ rule

then provides the posterior distribution of the

parameters given the data pðulxÞ; which is pro-

portional to the joint distribution pðx;uÞ; itself equal

to the product of the likelihood function pðxluÞ and

of the prior distribution pðu):

pðulxÞ ¼
pðxluÞ·pðuÞÐ
pðxluÞ·pðuÞdu

/ pðx;uÞ ð18Þ

Just as the prior distribution reflects beliefs about

the parameters prior to experimentation, the posterior

distribution reflects the updated beliefs after observ-

ing the sample data. In the Bayesian framework, all

statistical inference about the unknown parameters is

based on the posterior distribution.

3.1. Likelihood function and prior distribution

Note that (17) does not correspond to the like-

lihood function, since the variables m and z are not

observed. To obtain pðxluÞ; we need to integrate out

the latent variables m :

pðxluÞ ¼
ð

pðx;m; zðmÞluÞdm ð19Þ

To establish the prior distribution of the parameters,

we will assume that knowledge about the parameters

m and s 2; which only characterize the location and

scale of the stationary distribution of the observations,

does not help to define the persistence of the pheno-

menon, which is characterized by the parametersv and

h: This implies that pðuÞ ¼ pðm;s 2Þ·pðv;hÞ: Further-

more, we will assume thatv andh are independent, i.e.

pðv;hÞ ¼ pðvÞ·pðhÞ: Recall that h defines the mean

length of epochs during which the local mean stays

constant, and v sets the level to which this shifting

mean influences the observations. In a same region,

different levels of observed persistence in annual

streamflows could be explained by similar shifts in the

regional climate, represented by the vector z and

characterized by the parameter h; which however

affect basins to different degrees, characterized by the

parameter v: Thus, the parameter h defines the

regional (or climatological) effect whereas the par-

ameter v defines the local effect of these regional

variations. Assuming independence between these two

parameters is equivalent to assuming that knowledge

about the regional climate variations is not useful to

assess to which degree a given basin will be influenced

by these variations.

The parametric distributions of each parameter will

also be chosen conveniently, mainly to facilitate the

implementation of the estimation procedure. Given

that the parametersh andv are bounded between 0 and

1, we will assume that they are beta distributed, i.e.:

pðv;hÞ ¼ pðvÞ·pðhÞ ¼Bðhlsh;thÞ·Bðvlsv;tvÞ ð20Þ

where Bðuls; tÞ / ust21·ð1 2 uÞs2st21 corresponds to

the p.d.f. of the beta distribution with hyperparameters

s . 0 and 0 , t , 1: We prefer this less common

parameterization of the Beta distribution, since the

hyperparameters s and t are more easily interpreted.

Indeed, it may be shown that t is the expected value of u

whereas s can be interpreted as the weight given to the

information modeled by the prior distribution. Smaller

values of s lead to a more diffuse prior. Note that the

uniform prior corresponds to the particular case s ¼ 2

and t ¼ 1=2;whereas Jeffrey’s prior corresponds to the

particular case s ¼ 1 and t ¼ 1=2: Both of these prior

distributions are frequently used in situations where

prior knowledge on the parameter u is scarce.

For the location and scale parameters of the

(normal) stationary distribution of the observations,

we will assume a normal-inverse gamma prior,

V. Fortin et al. / Journal of Hydrology 296 (2004) 135–163 141



with conditional dependence between m and s 2; i.e.

pðm;s 2Þ ¼ pðmls 2Þ·pðs 2Þ

¼ Nðmln; k·s 2Þ·G21ðs 2la;bÞ ð21Þ

where G21ðs 2la;bÞ / ðs 2Þ2ðaþ1Þexpð2b=s 2Þ corre-

sponds to the p.d.f. of the inverse gamma distribution.

Therefore, the joint prior distribution of the par-

ameters is given by:

pðuÞ ¼ pðmls 2Þ·pðs 2Þ·pðvÞ·pðhÞ

¼ Nðmln;k·s 2Þ·G21ðs 2la;bÞ
�Bðhlsh; thÞ·Bðvlsv; tvÞ ð22Þ

Adding to Fig. 2, the nodes corresponding to

these additional components and the edges that

relate the parameters to the latent variables and

observations, we obtain the Bayesian network

representation of the SL model for t ¼ 1; 2;…;N

(Fig. 3). Note that observed data xt and hyperpara-

meters ðn;k;a;b; sv; tv; sh; thÞ are represented by

square nodes since they are known. The DAG of the

SL model would be slightly different for t ¼ 0 and

t ¼ N þ 1: For t ¼ 0; there is no predecessor state,

and no observed valued, while for t ¼ N þ 1; there is

no successor state, and no observed value.

3.2. Gibbs sampling

The integration operation plays a fundamental role

in Bayesian analysis, whether it is for calculating the

normalizing constant in (18) or for evaluating the

marginal posterior distribution of each parameters to

make inference about these unknown quantities. For

example, to evaluate the posterior marginal density

pðhlxÞ; the parameters m; s 2 and v must be integrated

Fig. 3. Bayesian network representing the relationship between the hyperparameters, parameters, latent variables and the observations in a SL

model.
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out of (18), which is already an integral with respect to

m (cf. Eq.(19)). Explicit evaluation of such integrals is

generally not possible. However, the Gibbs sampler, a

tool particularly suitable for HMMs models, offers a

straightforward solution to such problems. The idea of

Gibbs sampling is to simulate from the so-called

complete conditional distribution (CCD) of each

unknown quantity (parameters and latent variables),

which is obtained by conditioning on the data but also

on the values of the remaining unknown quantities,

which in turn are obtained from the previous iteration.

Under mild conditions, a Gibbs sampler generates a

Markov chain whose stationary distribution is pre-

cisely the posterior distribution of interest (Gelfand

and Smith, 1990). The output of this Markov chain,

once it has passed its transient stage, can be used to

estimate parameters and functions of these par-

ameters, such as moments and marginal densities.

For example, given a parameter space u ¼

ðu1;…; uJÞ and the CCD pðujlu1;…; uj21; ujþ1;…; uJÞ

for every parameter of the model, Table 1 presents

a general algorithm for the Gibbs sampler.

Different implementations of the Gibbs sampler

are possible, for example one can choose to draw the

parameters in a certain order, or regroup certain

parameters and draw from their joint CCD. For the SL

model, it was essential to sample from the joint

distribution of qt ¼ ðmt; ztÞ as the distribution of z

given m is a Dirac distribution.

After a sufficiently large number of iterations R; the

sampler has converged and the following simulated

values can then be used for estimating different

features of the posterior joint distribution, for example

moments and marginal densities. Full details on

theoretical properties of the algorithm and of the

Gibbs samples obtained can be found in Gelfand and

Smith (1990).

Note that Gibbs sampling is only appropriate when

it is reasonably simple to compute and sample from

the CCDs. Otherwise, other sampling techniques such

as the Metropolis-Hasting algorithm may be much

simpler to implement (Robert and Casella, 1999).

3.3. The complete conditional distributions

The conditional independence structure of the SL

model (Fig. 3) allows an easy evaluation of the CCD.

Denoting the CCD of a parameter uj by pðujl– Þ;
Bayes’ rule implies that pðujl– Þ is proportional to the

joint distribution of the observations, latent variables

and parameters:

pðujl– Þ ¼ pðujlx;m; z; uðjÞÞ ¼
pðx;m; z; uÞÐ
pðx;m; z;uÞduj

¼
pðx;m; zluÞpðuÞÐ
pðx;m; zluÞpðuÞduj

ð23Þ

where uðjÞ stands for a vector containing all element of

u except uj: The normalizing constant in (23) is much

easier to compute than in (18), in part because it

involves a single integral, but also because all the

probability distributions in (23), which do not involve

uj can be taken out of the integral and cancelled out,

being constant with respect to uj: We can now obtain

the CCDs for the parameters m;s 2;h;v and in

the same manner the CCDs for the latent variables

mNþ1 and qt: Let M be the set of time steps at which

new epochs begin, including the initial mean level, i.e.

M ¼ {0} < {t : zt21 ¼ 1; 1 # t # N þ 1}: Let also

r ¼
PN

t¼0 zt and �m ¼ 1=ðr þ 1Þ
P

t[M mt: Proof of the

following results is presented in Appendix A:

pðml–Þ ¼ pðmlr; �m;s2
;vÞ

¼N

�
m

���� k·ðr þ 1Þ· �mþv·v

k·ðr þ 1Þ þv
;

k·v·s2

k·ðr þ 1Þ þv

	
ð24Þ

pðs2l–Þ ¼ pðs2lx;m;z;vÞ

¼G21

0
BBB@s2

���������
N þ r

2
þ1þa;

XN
t¼1

ðxt 2mtÞ
2

2ð12vÞ

þ

X
t[M

ðmt 2mÞ2

2v
þ

ðm2nÞ2

2k
þb

1
CCCA ð25Þ

Table 1

General Gibbs sampling algorithm

Specify arbitrary starting values uð0Þ ¼ ðuð0Þ1 ;…; uð0ÞJ Þ

For i ¼ 1 to R; where R is the number of Gibbs samples to be drawn

For j ¼ 1 to J; where J is the number of parameters of the model

Draw u
ðiÞ
j from pðujluðiÞ1 ;…; u

ðiÞ
j21; u

ði21Þ
jþ1 ;…; u

ði21Þ
J Þ

Next j

Next i
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pðhl– Þ ¼ pðhlr;NÞ ¼ Bðhlshth þ r; sh

2 shth þ N 2 r þ 1Þ ð26Þ

pðvl– Þ ¼ pðvlx;m; z;m;s 2Þ

/
YN
t¼1

Nðxtlmt; ð1 2 vÞ·s 2Þ

�
Y
t[M

Nðmtlm;v·s 2Þ·Bðvlsv; tvÞ ð27Þ

pðmNþ1l– Þ ¼ pðmNþ1lqN ;m;s
2Þ

¼ ð1 2 zNÞ·dðmNþ1 2 mNÞ

þ zN·NðmNþ1lm;s 2Þ ð28Þ

pðqtl– Þ ¼ pðztl– Þ·pðmtlx;mðtÞ; zðtÞ;uÞ ð29Þ

where aðtÞ denotes a vector a from which element at

has been removed. The CCD pðmtlx;mðtÞ; zðtÞ; uÞ
corresponds to the distribution of mt conditional on

all other parameters and latent variables, with

the exception of zt:

pðztl–Þ ¼ pðztlmt;mtþ1Þ ¼
dð0Þ if mt ¼ mtþ1

dð1Þ if mt – mtþ1

(
ð30Þ

pðm0lx;mð0Þ; zð0Þ;uÞ ¼ pðm0lm1;h;m;s
2Þ

¼ ð1 2 hÞ·dðm1 2 m0Þ þ h·Nðm0lm;s 2Þ ð31Þ

pðmtlx;mðtÞ; zðtÞ; uÞ

¼ pðmtlxt; qt21;mtþ1;m;s
2
;h;vÞ; 1 # t # N

¼ ð1 2 zt21Þ·dðmt 2 mt21Þ

þ zt21·½ð1 2 hpÞ·dðmtþ1 2 mtÞ

þ h p ·Nðmtlð1 2 vÞ·mþ v·xt;v·ð1 2 vÞ·s 2Þ�

ð32Þ

where

hp ¼ 1 þ
1 2 h

h
£

Nðxtlmtþ1; ð1 2 vÞ·s 2Þ

Nðxtlm;s 2Þ

" #21

ð33Þ

3.4. Sampling from the complete conditional

distributions

Standard simulation methods are available to

sample from the CCD of m;s 2 and h: Since the

CCD of mNþ1 (Eq. (28)) is either a Dirac or a normal

distribution (depending on the value of zN), sampling

from this distribution simply means setting mNþ1

equal to mN if zN ¼ 0; and drawing from a normal

distribution if zN ¼ 1: Sampling from the CCD of qt

can be done by first sampling mt from pðmtlx;mðtÞ;

zðtÞ; uÞ (Eq. (32)) and then by setting zt ¼ 0 if

mt ¼ mtþ1 and zt ¼ 1 otherwise. Sampling from

pðmtlx;mðtÞ; zðtÞ;uÞ is relatively simple. First, if

zt21 ¼ 0; then mt is set to the value of mt21: If on

the contrary zt21 ¼ 1; then pðmtlx;mðtÞ; zðtÞ;uÞ is

simply a mixture of a Dirac and a normal

distribution. Sampling from this mixture implies

first drawing a random number u from a uniform

distribution on [0,1] to choose between the Dirac and

the normal distribution depending on whether or not

u . hp; and then drawing a random number from the

selected distribution.

Sampling from the CCD of v is a bit more

difficult since the normalizing constant cannot be

computed analytically. However, a simple inversion

method works nicely for this univariate distribution:

a random number u uniformly distributed between 0

and 1 is drawn and the value v for which Fðvl– Þ ¼Ðv
21 pðvl– Þdv ¼ u is sought. To estimate the

cumulative distribution we use a very simple but

robust approach: pðvl– Þ is evaluated for values of v

between 0 and 1 by steps of Dv ¼ 1023; Fðvl– Þ
is approximated by F̂ðvl– Þ ¼

Pv=Dv
i¼1 pði·Dvl– Þ=P1=Dv

i¼1 pði·Dvl– Þ for values of v which are multiples

of Dv; and is linearly interpolated in between. This

works quite well because the parameter v is bounded

between 0 and 1, but speed and accuracy gains could

be obtained by using a more efficient algorithm.

However, even for moderate sample sizes, simulation

of the latent variables takes most of the computing

time.

Table 2 details a first implementation of the Gibbs

sampler for the SL model. In practice, we found that

reversing the order in which the parameters are

sampled at each iteration seems to speed up

convergence to the stationary distribution. This

approach is known as the reversible Gibbs sampler
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(Robert and Casella, 1999). To initialize the Gibbs

sampler, we generate the initial parameter vector uð0Þ

by sampling from the prior distribution pðuÞ; z from

pðzlhð0ÞÞ;m0 from Nðm0lmð0Þ;vð0Þ·s2ð0ÞÞ; and then

each mt in turn from pðmtlmð0Þ
t21; z

ð0Þ
t21;m

ð0Þ;s2ð0Þ;vð0ÞÞ:

3.5. Checking for convergence

One of the main difficulties with Gibbs sampling

is to evaluate how many iterations must be performed

to obtain accurate results. Different numerical

procedures are available to check for convergence

(Robert, 1998). However, it is always a good idea to

make sure that results obtained from a number of runs

having different starting points are similar. To ensure

this, we apply two different procedures. We first

compare the posterior expected values of the par-

ameters obtained by Gibbs sampling for different

runs. For each run and each parameter u; we compute

the arithmetic mean over the second half of the Gibbs

sample:

�u ðRÞ ¼
1

dR=2e

XR
i¼bR=2cþ1

uðiÞ ð34Þ

If the Gibbs sampler has converged and if a

sufficient number of iterations have been performed

afterwards, then this estimate of the posterior

expectation of the parameter u should be approxi-

mately equal for independent runs. The coefficient of

variation CVð �uðRÞÞ gives a useful indication of the

accuracy of the posterior expectation.

We also apply the non-parametric method pro-

posed by Brooks and Gelman (1998). For each

parameter and each run j ¼ 1;…; J; we compute the

interval length Dj of the empirical 100ð1 2 aÞ%

interval, say 80%, from the second half of the Gibbs

sample. We then compute the interval length D for

the same coverage probability from the super-

sample obtained by mixing the results from all runs.

If the Gibbs sampler has converged, the values Dj

should be only slightly smaller than D on average. In

practice, convergence is assumed when the ratio

R̂BG ¼ D= 1
J

PJ
j¼1 Dj is smaller than 1.2 for every

parameter.

It is also possible to take advantage of the Gibbs

samples drawn from each independent Markov chain

to improve the accuracy. Indeed, the posterior

distribution of any function of the parameters can be

better estimated from the super-sample obtained by

mixing the Gibbs samples from each independent run.

For example, since the results obtained for J different

chains are independent, the coefficient of variation of

the posterior expectation for this super-sample can be

estimated by ðCVð �uðRÞÞÞ=
ffiffiffiffiffiffiffi
J 2 1

p
:

3.6. Elicitation of prior information

Before using the proposed Bayesian estimation

procedure, the values of the hyperparameters must be

set by the hydrologist on the basis of his expertise

prior to analyzing the data set. This can be a complex

and lengthy process. An interesting method consists in

obtaining prior guesses for quantiles of the stationary

distribution pðxtÞ and of the conditional distribution

pðxtlxt21Þ; which can then be translated into values for

the hyperparameters. Another approach, which we use

in this paper, consists in using observations at a

neighboring site to estimate the hyperparameters.

However, we will only use regionalization techniques

to estimate the parameters of the normal-inverse

gamma prior distribution, which characterize the

mean and variance of the stationary distribution of

the process, and assume uniform prior distributions

for the parameters controlling the persistence of the

process, h and v:

Table 2

Gibbs sampling algorithm for the SL model

A. Specify arbitrary starting values mð0Þ;s2ð0Þvð0Þ;hð0Þ;mð0Þ
Nþ1; q

ð0Þ
t ¼

ðmð0Þ
t ; zð0Þt Þ; t ¼ 0;…;N þ 1

B. For i ¼ 1 to R; where R is the number of Gibbs samples to be

drawn

1. Let Mði21Þ ¼ {0} < {t : zði21Þ
t21 ¼ 1; 1 # t # N þ 1}; rði21Þ ¼PN

t¼0 zði21Þ
t and �mði21Þ ¼

1

rði21Þ þ 1

P
t[Mði21Þ mði21Þ

t

2. Draw uðiÞ from a uniform distribution on (0,1)

3. Find vðiÞ such that F̂ðvðiÞlx;mði21Þ; zði21Þ;mði21Þ;s2ði21ÞÞ ¼ uðiÞ

4. Draw hðiÞ from pðhlrði21Þ;NÞ

5. Draw s2ðiÞ from pðs2lx;mði21Þ; zði21Þ;vðiÞÞ

6. Draw mðiÞ from pðmlrði21Þ; �mði21Þ;s2ðiÞ;vðiÞÞ

7. Draw mðiÞ
0 from pðm0lmði21Þ

1 ;hðiÞ;mðiÞ;s2ðiÞÞ

8. Let draw zðiÞ0 ¼ 0 if mðiÞ
0 ¼ mði21Þ

1 and zðiÞ0 ¼ 1 otherwise

9. For t ¼ 1 to N

(a) Draw mðiÞ
t from pðmtlxt ; q

ðiÞ
t21;m

ði21Þ
tþ1 ;mðiÞ;s2ðiÞ;hðiÞ;vðiÞÞ

(b) Let zðiÞt ¼ 0 if mðiÞ
t ¼ mði21Þ

tþ1 and zðiÞt ¼ 1 otherwise

10. Next t

11. Draw mðiÞ
Nþ1 from pðmNþ1lqðiÞN ;mðiÞ;s2ðiÞÞ

C. Next i
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3.7. Illustration of the estimation procedure using

synthetic data

To better understand the Bayesian estimation

procedure we applied the procedure to the simulated

sample obtained in Section 2 (Fig. 1). Recall that

this sample was simulated using as parameter values

h ¼ 0:2;v ¼ 1=2;m ¼ 0 ands 2 ¼ 1:We will suppose

that the mean and variance of the process are known

(respectively, 0 and 1) and assume uniform prior

distributions for h and v: It is straightforward to adapt

the Gibbs sampling algorithm to cases where some

parameters are known a priori: these parameters are

simply not drawn randomly from their CCD but simply

kept equal to their known value for all iterations.

Based on the last 10,000 iterations of a 20,000

iterations run, Fig. 4 shows the posterior distributions

of the parameters h and v: While there is significant

uncertainty left on the parameter values, the

posterior expectation of each parameter (respectively

E½hlx� ¼ 0:18 and E½vlx� ¼ 0:54) is close to the true

parameter value.

Fig. 5a shows the expected value of the latent

variables {mt; t ¼ 1; 2;…;N};E½mtlx�; together with

the observations and the exact values of mt: It can be

seen that the mean level is relatively well estimated on

average, despite the uncertainty remaining on the

parameters of the model. Fig. 5b presents the expected

value of zt21 for each time step E½zt21lx�: This

corresponds to the posterior probability that a new

epoch begins at time t: It can be seen that only a few

transitions are detected with high probability: out of

the 17 transitions present in the time series, only at

four time steps does the probability of a transition

reache the 0.5 mark. It is not surprising to observe that

these correspond to shifts of larger magnitude. Hence,

while the estimation procedure is capable of estimat-

ing the transition probability of the process and its

mean level as a function of time, it is incapable of

detecting all shifts present in a noisy data set.

However, the proposed estimation procedure still

serves as a coherent method for detecting sudden

shifts in a time series when multiple shifts are present,

and it suffices for forecasting purposes to be able to

estimate correctly the parameters of the model and the

current mean level of the process.

4. Application

The foregoing modeling approach will be illus-

trated using annual streamflows of the Senegal River.

This river is located in Western Africa and has a

drainage area of approximately S ¼ 218; 000 km2 at

the Bakel station. Fig. 6 shows the time series of the

annual flow data for the period 1903–1986, which

has been downloaded from http://www.cig.ensmp.fr/

,hubert. This time series shows a long-term

persistence. When fitting an autoregressive AP( p)

model to this time series, the Akaike Information

Criterion (Akaike, 1974) suggests an AR(2) model,

which has the same number of parameters as the SL

model. Using the segmentation procedure introduced

by Hubert et al. (1989), the persistence in this time

series could be explained by sudden shifts in the local

mean and variance of the process (Hubert, 2000).

Fig. 4. Posterior distribution for the parameters of the SL model applied to synthetic data: (a) for h in which E½hlx� ¼ 0:18 (the true parameter

value being 0.2), (b) for v in which E½vlx� ¼ 0:54 (the true parameter value being 0.5).
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At the 95% confidence level, this segmentation

procedure identified four change-points in the times

series, with new epochs beginning in 1922, 1937,

1950 and 1968.

4.1. Prior information modelling

In addition to the Senegal River data we use the

annual streamflows of the Niger River for the period

Fig. 6. Time series of annual flows for the Senegal River at Bakel (1903–1986) and the Niger River (1907–1986).

Fig. 5. (a) Expected value of the mean level and (b) transition probability estimated from synthetic data.
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1907–1986 to obtain a prior distribution for the

parameters of the stationary distribution, assuming

that the coefficient of variation CV½x� ¼ s½x�=E½x�

and the specific discharge Qs ¼ E½x�=A are similar for

both sites (where A denotes the area of the watershed).

The values of these statistics for the Niger River are

CV½x� ø 0:3 and Qs ø 3 l/s/km2. Hence, our prior

estimates of the mean and variance of the annual flows

of the Senegal River are EðmÞ ¼ 700 m3/s and

Eðs 2Þ ¼ ð200 m3=sÞ2; respectively. Furthermore,

from experience we estimate that EðmÞ is within

30% of the population value, two times out of three,

and that Eðs 2Þ is also within 100% of the population

value, two times out of three (recall that for a normal

distribution, the probability associated with an inter-

val of plus or minus one standard deviation about

the mean is approximately 2/3). Hence, the standard

deviation of the prior distribution should be about

30% of the prior expectation for m; and 100% for s 2;

which means that we would like to let CV½m� ¼ 0:3

and CV½s 2� ¼ 1; approximately.

From the properties of the normal-inverse gamma

prior (Bernardo and Smith, 1994), it is known that

E½s 2� ¼ b=ða2 1Þ;E½m� ¼ E½mls 2� ¼ n; var½s 2� ¼

b2=½ða2 1Þ2ða2 2Þ� and var½mls 2� ¼ ks 2; so that

CV½m� ¼ E½CV½mls 2�� ¼ E½
ffiffi
k

p
·s=n� ø

ffiffi
k

p
·CV½x�

and CV½s 2� ¼ 1=
ffiffiffiffiffiffiffiffi
a 2 2

p
: Hence, reasonable values

for the parameters of the normal-inverse gamma distri-

bution are: a ¼ 2 þ 1=CV½s 2�2 ¼ 3;b ¼ ða2 1Þ·

E½s 2� ¼ 80; 000; n ¼ E½m� ¼ 700 and k ¼ ðCV½m�=

CV½x�Þ2 ¼ 1: The parameters of the prior distributions

of h and v are chosen to obtain uniform prior

distributions: sh ¼ sv ¼ 2; and th ¼ tv ¼ 1=2:

4.2. Inference for the parameters

Using Gibbs sampling, we ran 10 Markov chain in

parallels, drawing from each chain 20,000 Gibbs

samples, and keeping in each case the results from the

last 10,000 iterations. Fig. 7a–d show the prior and

posterior densities for each parameter of the SL model

based on 100,000 values. The posterior density were

Fig. 7. Posterior distribution for the parameters of the SL model applied to the Senegal River annual flows: (a) for h in which E½hlx� ¼ 0:22; (b)

for v in which E½vlx� ¼ 0:47; (c) for m in which E½mlx� ¼ 705; and (d) for s in which E½slx� ¼ 262:
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estimated by kernel smoothing with a normal kernel

function. The expected values of the parameters are

indicated in the diagrams. The expected value of the

transition probability h is about 0.2 and the variance

explained by the shifting mean process is about 50%,

but there remains a large amount of uncertainty on

these parameters. For example, a 95% credibility

interval for h gives [0.06;0.56] and a 95% credibility

interval for v gives [0.22;0.76]. Note that the

posterior distribution of the standard deviation s is

presented instead of the variance s 2 as its interpret-

ation is generally easier.

The relatively large uncertainty on the posterior

marginal distributions of h and v can be explained

in part by the fact that the parameters are not

independent. The correlation between each pair of

parameters can be easily estimated from the Gibbs

samples (Table 3). It is seen that the largest correlations

are betweenh andv;which account for the persistence

of the time series, and betweenv ands 2;which are the

variance parameters. These large correlations may

delay convergence of the Gibbs sampler, but are

correctly taken into account by the Gibbs sampling

approach to retrospective and predictive analysis.

4.3. Convergence analysis

To evaluate the accuracy of the results obtained, we

compared the posterior expectation of the parameters

as the number of iterations increases for each of the 10

independent runs, using Eq. (34). Fig. 8 presents

the coefficient of variation of the posterior expectation

estimated from these ten independent Markov chains

for each parameter, as the number of iterations is

increased from 1 to 20,000 (of course, the total

number of iterations performed is ten times higher). It

can be seen that the coefficient of variation is about

one order of magnitude larger for the transition

probability than for the long-term mean. Still, after

Fig. 8. Coefficient of variation of the posterior expectation of each parameter, estimated from ten independent Markov chains.

Table 3

Correlation between the parameters of the SL model for the Senegal

River

h v m s2

h 1 0.44 0.20 20.10

v 0.44 1 0.10 0.48

m 0.20 0.10 1 20.05

s2 20.10 0.48 20.05 1
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10,000 iterations for each run, the CV is less than 5%

for all parameters (relative to its expected value, the

most variable parameter is h; but with an expected

value of 0.22, a 5% coefficient of variation

corresponds to a standard deviation of 0.01). There-

fore, we consider the results to be sufficiently accurate

to support the analyses presented in this paper.

The Brooks and Gelman (1998) procedure leads to

the same conclusion: the value of the statistic R̂BG

computed for a 80% credible interval is smaller than

1.02 for all parameters after 20,000 iterations (the

maximum acceptable value being 1.2). In fact, even

for the most variable parameter, h; R̂BG is smaller than

1.2 after only 3500 iterations.

4.4. Retrospective analysis

Fig. 9a shows the expected value of the latent

variables {mt; t ¼ 1; 2;…;N}; E½mtlx�; together

with the observations, while Fig. 9b presents the

expected value of zt21 for each year, E½zt21lx�:
This corresponds to the posterior probability that a

new epoch begins on year t: These two graphs can be

very useful for identifying sudden shifts in the time

series and corresponding periods of low or high flows.

For example, it is likely that a period of low flows

began in 1968 (with a probability of about 0.7). In fact,

according to these results, the four years likely to

correspond to the beginning of a new epoch are 1922,

Fig. 9. (a) Expected value of the mean level, (b) transition probability and (c) probability of wet spell.
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1937, 1950 and 1968. Indeed, only for these four years

is E½zt21lx� higher than 0.5. Note that these epochs

correspond exactly to those identified at the 95%

confidence level by the segmentation procedure of

Hubert (2000). Hence, the proposed procedure

generalizes Hubert’s segmentation procedure insofar

as it gives similar results while providing an

assessment of the uncertainty on the parameters and

latent variables of the model. However, the SL model

is more constrained since it imposes a geometric

distribution for the duration of epochs and assumes

the variance to be constant across epochs.

From the properties of the geometric distribution,

the expected duration of epochs is E½1=hlx� ¼ 6:4

years, whereas the segmentation procedure of Hubert

(2000) identifies only five segments in an 84 year time

series, with an average length of 17 years. However, as

was shown in Section 3.7 with synthetic data, many

shifts of small magnitude can go undetected, which can

explain the discrepancy between the expected duration

of epochs and the number of segments identified.

The SL model also offers a new approach for

defining dry and wet spells. Indeed, if we look at the

plot of the expected mean level E½mtlx� over time and

compare it with the long-term mean (Fig. 9a), we can

define dry and wet spells quite naturally by classifying

years as wet or dry depending if E½mtlx� . E½m� or

E½mtlx� , E½m�: This classification defines six

periods: 1903–1909 (wet), 1910–1917 (dry), 1918–

1938 (wet), 1939–1949 (dry), 1950–1967 (wet) and

1968–1986 (dry). Of course, there is also uncertainty

associated with this classification, which can be

measured for example by the probability of a given

year t being wet, Pr½mt . m� (Fig. 9c). For example, it

can be observed that the probability of being in a wet

spell is close to zero after 1980.

4.5. Adequacy of the SL model to represent

the observed persistence

While the SL model may be appropriate to

represent sudden shifts in the regional climate, the

shifts cause autocorrelation as shown in Section 2.2.

Thus, it should be used with caution when one

suspects that a significant part of the autocorrelation

of the process under consideration is caused by

storage effects in the watershed. When both abrupt

shifts and storage affect the autocorrelation of

the underlying process, the shifting mean autoregres-

sive (SMAR) model proposed by Sveinsson and Salas

(2001) in which observations follow an autoregressive

AR(1) process between shifts in the mean, may be a

better model although no Bayesian estimation and

forecasting methodology has been developed for this

model at the moment.

In the case of the Senegal River, Hubert (2000)

suggested that it is in fact the regional climate

which is changing, and that the observed auto-

correlation in the time series is induced by the

sudden shifts. This is supported by the fact that

the observed lag-1 autocorrelation between any two

shifts identified by Hubert (2000) is lower than the

lag-1 autocorrelation computed on the complete

time series ðr̂1 ¼ 0:4Þ: In fact, during the periods

1903–1921, 1922–1936, 1937–1949 and 1950–

1967 the observed lag-1 autocorrelation is even

negative. It is only for the last period (1968–1986)

that the observed lag-1 autocorrelation is close to

0.4. But the strongest evidence in favor of a

climatic explanation for the persistence in this data

set is the spatial coherence of the abrupt shifts, the

neighboring Niger River showing similar shifts at

similar times.

Furthermore, note that from the Gibbs samples the

posterior expectation for the lag-1 autocorrelation,

E½r1� ¼ E½v·ð1 2 hÞ�; is estimated at 0.4, the standard

deviation of the posterior distribution of r1 being about

0.1. Hence, the SL model is capable of representing the

observed persistence as measured by r̂1:

Finally, a classical residual analysis was performed

on 1̂t ¼ E½mt�2 xt to ensure that no signal remained

in the residuals. This time series passes Kendall’s

trend test at the 5% level with a p-value of 0.7, Wald-

Wolfowitz’s independence test at the 5% level with a

p-value of 0.1, the Chi-square goodness-of-fit test for

normality (with 11 classes) at the 5% level with a

p-value of 0.5, and the empirical moments test for

normality (based on the sample skewness and

kurtosis), with p-values of 0.5 for skewness and 0.98

for kurtosis.

4.6. Probabilistic forecasting

From a Bayesian point of view, a forecast of the

next observation yNþ1 should be based on the posterior

distribution of these future observations given x;

V. Fortin et al. / Journal of Hydrology 296 (2004) 135–163 151



which is also known as the predictive distribution

pðyNþ1lxÞ: While this distribution is unknown, from

Eq. (5) the distribution of yNþ1 given the parameters

and latent variables is:

pðyNþ1lmNþ1;s
2
;vÞ

¼ NðyNþ1lmNþ1; ð1 2 vÞ·s 2Þ ð35Þ

Since we obtained through Gibbs sampling a

sample from the posterior distribution pðmNþ1;v;s
2l

xÞ; we can generate a sample from pðyNþ1lxÞ by

simulating yNþ1 from NðyNþ1lmNþ1; ð1 2 vÞ·s 2Þ for

each Gibbs sample mðiÞ
Nþ1;v

ðiÞ;s2ðiÞ : This sample can

then be used to produce a probabilistic forecast of

yNþ1: Fig. 10 presents this probabilistic forecast,

together with the predictive distribution of mNþ1 (the

local mean) and the posterior distribution of m (the

long-term mean). It can be seen that the expected

value of yNþ1 (480 with a standard deviation of 260) is

well below the long-term mean, since the local mean

(480 ^ 170) is much lower than the long-term mean

(710 ^ 60). From Hubert (2000), the observed

streamflow for that year was around 200 m3/s, break-

ing the record for the lowest observed flow.

It is also possible, using the SL model, to produce a

long-term probabilistic forecast for as many years ahead

as needed. Of course, the hypotheses of the SL model

must still hold in the future. In particular, the stationarity

hypothesis is of concern in the case of the Senegal River,

since the streamflow has remained under the long-term

mean for the last 12 years of the record.

Conditional on the value of the parameters and

on the latent variable qN ¼ ðmN ; zNÞ; a probabilistic

forecast of the observations y ¼ ðyNþ1;…; yNþkÞ

and latent variables my ¼ ðmNþ1;…;mNþkÞ; zy ¼

ðzNþ1;…; zNþkÞ can be obtained by sampling from

their joint probability distribution, which can be

derived in the same manner as (17):

pðy;my; zylqN ; uÞ

¼ pðylmy;s
2
;vÞ·pðmylzy;m;s

2
;vÞ·pðzylhÞ

¼
YNþk

t¼Nþ1

pðytlmt;s
2
;vÞ

� pðmtlmt21; zt21;m;s
2
;vÞ·pðztlhÞ

¼
YNþk

t¼Nþ1

pðyt; qtlqt21; uÞ ð36Þ

Fig. 10. Probabilistic forecast of the 1987 mean annual streamflow of the Senegal River.
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Simulating from pðy;my; zylqN ;uÞ is done itera-

tively by sampling from pðyt; qtlqt21; uÞ for

t ¼ N þ 1;…;N þ k: As for the 1-year ahead forecast,

uncertainty on the parameters of the SL model can be

taken into account by sampling from pðy;my; zylqN ;uÞ
for each Gibbs sample ðqðiÞ

N ;uðiÞÞ: Using this approach,

we obtain a sample from the predictive distribution

pðy; my; zylxÞ / pðy; my; zylqN ; uÞ·pðqN ; ulxÞ: This

sample can be used to issue probabilistic forecasts of

any function gðy;my; zyÞ; for example the total volume

VðyÞ ¼
PNþk

t¼Nþ1 yt:

Furthermore, conditional forecasts can also be

issued, for example to take into account the possibility

that the process is not stationary and that the

streamflow regime has changed due to human

influence on the watershed and on the climate, and

will not go back to previous levels. This could be done

by letting zNþ1 ¼ · · · ¼ zNþk ¼ 0 in the simulation

process (which we will denote simply by zy ¼ 0),

instead of simulating zy from pðzylhÞ: We would then

obtain a sample from the distribution pðy;mylx;
zy ¼ 0Þ:

Fig. 11 presents three different forecasts of the

1987–1993 total streamflow volume for the Senegal

River: the predictive distribution, pðy;my; zylxÞ; the

predictive distribution conditional on the additional

information that no further shifts occur in these

7 years, pðy;mylx; zy ¼ 0Þ and finally, for comparison

purposes, a probabilistic forecast of the 7-year volume

conditional on the hypothesis that a shift occurs at the

end of the observed record, i.e. pðy;my; zylx; zN ¼ 1Þ:

Note from (11) and (36) that random samples from

pðy;mylx; zN ¼ 1Þ are independent of the latent

variable qN since pðmNþ1lmN ; zN ¼ 1;m;s 2;vÞ ¼

NðmNþ1lm;vs 2Þ: Since mNþ1 is drawn from the

same distribution as m0 (Eq. (12)), pðy;my; zyl
x; zN ¼ 1Þ corresponds to our best forecast of the

7-year volume if we had only the information on

the values of the parameters, and not on the value of

the latent variable qN : This would happen for example

if we were asked to make a prediction of the 7-year

volume without knowing the years for which the

prediction was valid, such as is the case in a typical

stochastic simulation framework. For this reason, we

Fig. 11. Probabilistic forecast of the 1987–1993 volume of the Senegal River under three hypotheses: (a) forecast assuming stationarity of

streamflows; (b) forecast assuming that the mean of the process stays indefinitely at the 1986 level; (c) simulation of the 7-year volume (no

knowledge of initial conditions assumed).
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refer to this distribution as the predictive simulation of

the 7-year volume.

The observed volume for 1987–1993 was obtained

from Fig. 1 of Hubert (2000). At 74 km3, it is well

below the expectation of the simulated 7-year volume

(148 km3 with a standard deviation of 32 km3),

and much closer to the forecasted 7-year volume

(126 ^ 39 km3). It is however quite close to the

prediction made under the hypothesis that the mean

level of 1986 persists throughout the forecast period

(91 ^ 25 km3). While this result weighs in favor of

non-stationarity, the non-exceedance probability of

the observed volume computed from pðy;my; zylxÞ is

still over 8%.

Notice on Fig. 10 that the SL model predicts with a

small but non-negligible probability that the flow

might be negative, which is obviously not possible.

There is of course nothing in the model that prevents

negative flows from being simulated or forecasted. If

the probability of such an event is significant, one

should condition on the event yNþ1 $ 0; which is

straightforward with Gibbs sampling: it only implies

dropping in the analysis all Gibbs iteration for

which yNþ1 , 0: Another solution to eliminate

the possibility for negative forecasts would be to

perform a logarithmic transformation on the flows

prior to the analysis. As the stationary distribution of

xt is a normal distribution for the SL model (being the

sum of two independent processes with normal

stationary distributions), the decision of whether or

not to transform the data prior to the analysis could be

based on an analysis of the linearity of the

observations on normal probability paper. In the

case of the Senegal River annual flows, it is interesting

to note that the observations pass the empirical

moments test for normality, but not their logarithm.

Hence, no transformation was performed on the data.

Given the dependence in the observations, one must

however be cautious not to reject the SL model on the

basis of a standard test for normality.

4.7. Point forecasting-a comparison with linear

ARMAðp; qÞ models

As was mentioned before, persistence is such in the

Senegal River annual flow series that the AIC

criterion suggests an AR(2) model, amongst autore-

gressive ARðpÞ models. It is interesting to evaluate

how the SL model fares when compared to the AR(2)

model selected by the AIC criterion. Another inter-

esting model to consider is the ARMA(1,1), since its

autocorrelation structure is similar to that of the SL

model. Recall that an ARMAðp; qÞ model can be

written as:

ðxt 2 mÞ ¼ 1t þ
Xp

k¼1

ak·ðxt2k 2 mÞ þ
Xq

k¼1

bk·1t2k ð37Þ

where 1t is a white noise with variance s 2
1;m is

the long-term mean of the process, a1;…; ap are the

autoregressive parameters and b1;…; bq are the

moving average parameters. Hence, an ARMAðp; qÞ

model has p þ q þ 2 parameters. Hence, the SL,

AR(2) and ARMA(1,1) all have four parameters.

Only a comparison of point forecasts will be

presented in this section, as Bayesian estimation and

forecasting for ARMAðp; qÞ models is outside the

scope of this paper. We propose to compare the

forecasts which would have been issued by the SL,

AR(2) and ARMA(1,1) models for each year, by

fitting each model on observations ðx1; x2;…; xkÞ and

then forecasting the observation xkþ1 by a point

forecast x̂kþ1: We showed in Section 4.6 that the SL

model could also be used to issue a forecast under the

hypothesis that no further shifts occur after the last

observed shift. We also want in this section to

compare this conditional forecast with the other

models.

The predictive distribution of the SL model

being generally asymmetric, the posterior expec-

tation may not make a good point forecast. Indeed,

it is not the value most likely to occur: it is the

mode of the posterior distribution, which corre-

sponds to the most likely value. We shall therefore

use the mode of the posterior distribution as our

point forecast for the SL model. Of course, it would

be preferable to choose a point forecast by

maximizing the utility function of the forecast, but

this information is generally not available. Estimat-

ing the mode of the posterior distribution is not

straightforward from Gibbs samples. We obtain it

through kernel smoothing, with a normal kernel

function optimized for a normal distribution, by

finding the value which maximizes the kernel

estimation of the p.d.f.
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For each time step, we performed only 10,000

iterations for the SL model, keeping the last 5000 for

forecasting. To fit the AR(2) and ARMA(1,1) models

to the data, we applied the ARMAX function from

The MathWorks MATLAB System identification

toolbox version 5.0.2. The function is able to fit the

models to our dataset for k $ 8: We can therefore

compare the performance of the two models from

1910 through 1986. For each year and each model M;

we thus obtain a point forecast x̂M
kþ1; which we would

like to aggregate to obtain a measure of the accuracy

of each model. It is tempting to only apply usual

criteria such as bias (BIAS) mean absolute error

(MAE) or root mean square error (RMSE), but this

gives the same weight to each year, whereas the

number of observations used to fit the models is

increasing, and thus the accuracy of the forecasts is

changing with time. As a surrogate for the (hopefully

increasing) accuracy of the forecasts, we propose to

give a weight to each forecast x̂M
kþ1; which is

proportional to the number k of observations used to

fit the model, and then compute a weighted bias

(WBIAS), a weighted MAE (WMAE) and a weighted

RMSE (WRMSE) for each model, as well as bias,

MAE and RMSE:

BIAS¼
1

N 2N0

XN21

k¼N0

x̂M
kþ1 2 xkþ1

MAE¼
1

N 2N0

XN21

k¼N0

lx̂M
kþ1 2 xkþ1l

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N 2N0

XN21

k¼N0

ðx̂M
kþ1 2 xkþ1Þ

2

vuut
WBIAS¼

2

N2 2N 2N2
0 þN0

XN21

k¼N0

kðx̂M
kþ1 2 xkþ1Þ

WMAE¼
2

N2 2N 2N2
0 þN0

XN21

k¼N0

klx̂M
kþ1 2 xkþ1l

WRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N2 2N 2N2
0 þN0

XN21

k¼N0

kðx̂M
kþ1 2 xkþ1Þ

2

vuut
ð38Þ

where N0 is the minimum number of observations

kept for model fitting (here N0 ¼ 8), and N is the total

number of observations available (here N ¼ 84).

Table 4 shows the value of each statistic for the SL,

AR(2) and ARMA(1,1) models, as well as for two

other simple approaches to forecasting, the AR(0) and

naı̈ve forecast. The AR(0) model suggests that the

time series is a white noise, and thus its point forecast

is simply the past observed average annual

flow: x̂ARð0Þ
kþ1 ¼

Pk
i¼1 xi=k: The naı̈ve forecast is even

simpler: it simply corresponds to the previous

observation: x̂NAIVE
kþ1 ¼ xk: In practice, such simple

approaches to forecasting can prove hard to beat. The

conditional forecast issued with the SL model under

the hypothesis that no more shifts in the mean occur is

denoted SL-c. The standard deviation of each statistic

is also indicated in Table 4, estimated using the

Jackknife technique (Quenouille, 1956).

The results obtained show that the naı̈ve forecast

is the less biased, whereas the SL-c forecast leads to

the smallest error, albeit only by 2–4% depending on

the criterion. The SL and ARMA(1,1) models have

similar performance, followed by the AR(2) and

AR(0) models. Furthermore, the naı̈ve forecast beats

the AR(0) and AR(2) models in terms of WMAE.

This is in part because all models perform relatively

poorly in the latter part of the time series, starting in

1968, as shown by Fig. 12, as they systematically

overestimate the annual flow: the amplitude of the

bias is six to nine times larger than its value up to

1968. This behavior suggests a structural change in

the process underlying the time series, which cannot

be accounted for by a stationary model, such as the

SL and ARMAðp; qÞ models. The SL model forecasts

can be issued under the hypothesis that the last shift

in the mean is a permanent feature, but in that case

change-point models such as proposed by Perreault

et al. (2000a,b) would be more coherent with this

hypothesis.

5. Discussion and conclusion

The SL model has proven to be useful for modeling

and generating time series of annual streamflow, but

had never been used to our knowledge in forecasting

mode or for retrospective analysis and segmentation

of time series. This model assumes that the obser-

vations are normally distributed with a variance that is

constant in time, but with a mean that stays constant
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for epochs of length distributed according to a

geometric distribution.

5.1. Advantages and difficulties of a Bayesian

approach

In this paper, we estimate the parameters of a SL

model using a Bayesian approach, along with Gibbs

sampling. This estimation method takes into account

the whole sample for estimating the parameters, not

only the first moments and the autocovariance

function as in Salas and Boes (1980). Furthermore,

the Bayesian framework provides an assessment of

the uncertainty on the parameters, as well as estimates

of the mean level of the process and of years at which

shifts in the mean are more likely to have occurred. As

a by-product, Gibbs sampling also provides all

the information needed to make probabilistic fore-

casts. Gibbs sampling also provides the probability

distribution of the residuals, which is useful for model

Fig. 12. Point forecast of the mean annual flow of the Senegal River from 1968 to 1986.

Table 4

Comparison of point forecasts of the Senegal River annual flows

MAE RMSE BIAS WMAE WRMSE WBIAS

SL 198 ^ 2 239 ^ 2 27 ^ 3 196 ^ 2 231 ^ 2 53 ^ 3

SL-c 193 ^ 2 237 ^ 2 19 ^ 3 185 ^ 2 225 ^ 2 38 ^ 3

ARMA(1,1) 197 ^ 3 241 ^ 3 23 ^ 4 192 ^ 2 231 ^ 2 44 ^ 2

AR(2) 213 ^ 2 251 ^ 2 33 ^ 2 207 ^ 2 240 ^ 4 52 ^ 4

AR(0) 232 ^ 2 277 ^ 3 54 ^ 2 249 ^ 2 291 ^ 4 96 ^ 5

Naive 222 ^ 3 290 ^ 3 7 ^ 4 201 ^ 3 265 ^ 3 9 ^ 4
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verification since the residuals can then be tested for

randomness. However, all Bayesian methods require a

careful assessment of the prior distribution. Further-

more, with Gibbs sampling there is the additional

challenge of making sure that the Gibbs sampler has

converged to the stationary distribution.

5.2. Forecasting with regime-switching models

In an application of the model to point forecasting

of the Senegal River annual flows, the SL model has

not performed better than a linear autoregressive

model with moving average ARMA(1,1), which has

the same number of parameters as the SL model.

However, it did so when we considered a conditional

forecast where we supposed that the last shift in the

mean to have occurred in the time series was a

permanent feature, and that no more shifts would

occur in the future. The same phenomenon was

observed for probabilistic forecasting: the conditional

forecast performed better than the unconditional one.

The surprising performance of this conditional fore-

cast points to the fact that the Senegal River annual

flows time series may not be stationary, and that a

more permanent change in either land use or climate

has occurred since the last shift, identified in 1968.

The fact that a regime-switching non-linear model

like the SL model does not clearly outperform linear

models for point forecasting, despite its apparent

successatdescribingthe timeseries,was tobeexpected,

since linear models can provide good approximation of

non-linear time series when the noise level is high, see

for example Ramsey (1996) and Dacco and Satchell

(1999). However, van Dijk and Franses (2003) suggest

that non-linear models can prove superior for forecast-

ing extreme events, and that these events being

generally of more importance, this should be reflected

in the criterion used for model comparison. Finally, it is

possible that a non-linear model improves probabilistic

forecasts while not improving upon point forecasts

(Clements and Hendry, 1999).

It should also be noted that other models could be

devised to forecast annual flows of the Senegal River,

for example a non-parametric approach, such as an

adaptation of the model proposed by Sharma and

O’Neill (2002) for monthly streamflow sequences.

But the advantage of the SL model is that it can be

used both for retrospective analysis, including for

identification of multiple shifts in a time series,

and forecasting. It can then be easier to explain the

forecast to the decision-maker by showing how

the basin responds to the regional climate, and how

the induced persistence can be used to make useful

forecasts. Experience in retrospective analysis, sto-

chastic simulation and forecasting of annual flows has

taught us that a coherent approach to these problems is

of some importance.

5.3. Research perspectives

To be able to model both the persistence induced by

climate variability and the persistence induced by

storage effects in the watershed, it would be quite

interesting to extend this Bayesian SL model to include

autocorrelation in the residuals, as proposed by

Sveinsson and Salas (2001) and to develop a multi-

variate model. Since the SL model is in part justified by

the suggestion that apparent shifts in the annual mean

of streamflows could be induced by sudden shifts in

climate, it would make sense, in a given region, to

assume that the shifts occur at the same time

z ¼ ðz0; z1;…; zNÞ at all sites, along with parameter h

which governs these shifts, and let the proportion v of

variance explained by these sudden shifts be allowed to

vary from site to site, along with the long-term mean

and variance at each site. Forecasting could further-

more be improved by taking into account explanatory

variables, such as a seasonal forecast of precipitations

or climatic indices.

To better evaluate the probabilistic forecasts

produced by a SL model, we also plan to retro-

spectively compare probabilistic forecasts obtained

with a SL model with probabilistic forecasts issued by

ARMA processes for different annual flow time series.

Scoring probabilistic forecasts is, however, more

challenging that scoring point forecasts. We suggest

the use of a pseudo Bayes factor (Gelfand and Dey,

1994): for any two probabilistic forecasts of a decision

variable y expressed by two p.d.f.’s p1ðylxÞ and

p2ðylxÞ; the ratio Bðy0Þ ¼ p1ðy0lxÞ=p2ðy0lxÞ evaluated

at the observed value y0 is an interesting relative

measure of both accuracy and precision of a proba-

bilistic forecast, and a geometric average of Bðy0Þ yields

a score which is known as a pseudo-Bayes factor.

Finally, some efforts should be devoted to

optimizing the estimation procedure in order to reduce
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computing time, in particular the generation of

parameter v and a stopping criterion for assessing

from parallel runs that sufficient iterations have been

performed for inference and forecasting purposes.

Indeed, on an entry-level PC computer, we are able to

perform about 2000 iterations per minute for the

1903–1986 Senegal River dataset. Hence, an accurate

estimation of the posterior distribution takes 1 h

40 min in this case, which can be a limitation for

some applications, for example if the procedure were

to be used as a screening test for sudden changes in the

mean of a process. Reducing computing time would

open the possibility for the development of a generic

software for retrospective analysis and forecasting

using the SL model. For the time being, a MATLAB

routine is available from the corresponding author.

5.4. Climate change

We are aware that the approach proposed in this

paper for streamflow forecasting does not address

one of the most challenging questions at the heart of

long-term streamflow forecasting in the 21st century:

given the possibility of a human-induced climate

change, will streamflows in this century be anything

like we have known in the 20th century? Indeed, the

SL model is stationary, and in forecast mode will

inevitably produce probabilistic forecasts, which

converge towards the stationary distribution, once

the effects of the initial conditions are gone. If the

effects of a human-induced climate change are already

visible in the observed record of streamflows, it might

be possible from a Bayesian perspective to test the

hypothesis that observed streamflows are stationary

by comparing two models which allow for shifts in the

mean, one being stationary (M1; the SL model), and

one being non-stationary ðM2Þ: A good candidate for

M2 could be the change-point model proposed by

Perreault et al. (2000a). This model assumes that there

is a single shift in the mean in the period of record, and

implicitly assumes that this shift is a permanent

feature, so that future streamflows will have a mean

level equal to the mean observed after this shift. Since

the models are not nested, we propose to test for

stationarity by performing a Bayes factor analysis for

these two models. As a by-product of this analysis, we

would get the posterior probability of each model

given the data, which could then even be used to

forecast from a mixture of the two models, to account

for possible non-stationarity in streamflows.
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Appendix A

Proofs of Eqs. (24)–(33), i.e. the CCDs are shown

in this section. For each parameter, the CCD is

obtained from (23) by canceling the terms that do not

involve this parameter and integrating the numerator

to obtain the normalizing constant.

We start by presenting a certain number of

intermediate results which will be needed to complete

the proofs. First, let us observe that if z is known, the

conditional distribution of m given z and u; pðmlz;
m;s 2;vÞ; is a product of normal distributions. Indeed:

pðmlz;m;s 2
;vÞ /Nðm0lm;v·s 2Þ

·
YN
t¼0

{ð1 2 ztÞ·dðmtþ1 2 mtÞ þ zt·Nðmtþ1lm;v·s 2Þ}

/Nðm0lm;v·s 2Þ·
Y

{t:zt¼1}

Nðmtþ1lm;v·s 2Þ

/
Y
t[M

Nðmtlm;v·s 2Þ ðA1Þ

where M ¼ {0} < {t : zt21 ¼ 1; 1 # t # N þ 1}:

Two properties of the normal distribution will also

be usefulð
Nðxtlmt; ð1 2 vÞ·s 2Þ·Nðmtlm;v·s 2Þdmt

¼ Nðxtlm;s 2Þ ðA2Þ
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Nðxtlmt; ð12vÞs2Þ·Nðmtlm;vs2Þ

¼Nðxtlm;s2Þ·Nðmtlð12vÞmþvxt;vð12vÞs2Þ

ðA3Þ

Proof of (A2):

ð
Nðxtlmt;ð12vÞ·s2Þ·Nðmtlm;v·s2Þdmt

¼
1

2ps2
ffiffiffiffiffiffiffiffiffiffiffi
vð12vÞ

p
ð

exp 2
1

2s2

ðxt2mtÞ
2

12v

" 

þ
ðmt2mÞ2

v

#!
dmt

¼
1

2ps2
ffiffiffiffiffiffiffiffiffiffiffi
vð12vÞ

p exp 2
ðxt2mÞ2

2s2

 !

�
ð

exp 2
½mt2ðmþvxt2vmÞ�2

2vð12vÞs2

 !
dmt

¼Nðxtlm;s2Þ·
ð
Nðmtlmþvðxt2mÞ;vð12vÞs2Þdmt

¼Nðxtlm;s2Þ

Proof of (A3):

Nðxtlm;s2Þ·Nðmtlð12vÞmþvxt;vð12vÞs2Þ

¼
1

2ps2
ffiffiffiffiffiffiffiffiffiffiffi
vð12vÞ

p

�exp 2
vð12vÞðxt2mÞ2þ½mt2ð12vÞm2vxt�

2

2vð12vÞs2

 !

¼
1ffiffiffiffiffiffiffiffiffi

2pvs2
p exp 2

ðxt2mtÞ
2

2ð12vÞs2

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð12vÞs2
p

�exp 2
ðmt2mÞ2

2vs2

 !

¼Nðxtlmt;ð12vÞs2Þ·Nðmtlm;vs2Þ

A.1. Complete conditional distribution for m

pðml– Þ / pðmlz;m;s 2
;vÞ·pðmls 2Þ ðA4Þ

Hence, from (A1):

pðml– Þ /
Y
t[M

Nðmtlm;v·s 2Þ·Nðmln;ks 2Þ

/ exp 2ð2s 2Þ21 v21
X
t[M

ðmt 2 mÞ2

"(

þ k21ðm2 vÞ2
#)

/ exp 2
kðr þ 1Þ þ v

2kvs 2

�

� m2 2 2m
kðr þ 1Þ �m þ vn

kðr þ 1Þ þ v

� ��

¼ N m
�

j
kðr þ 1Þ �m þ vv

kðr þ 1Þ þ v
;

kvs 2

kðr þ 1Þ þ v
Þ ðA5Þ

A.2. Complete conditional distribution for s 2

pðs 2l– Þ / pðxlm;s 2
;vÞ·pðmlz;m;s 2

;vÞ

� pðmls 2Þ·pðs 2Þ ðA6Þ

Hence, from (A1):

pðs 2l– Þ /
YN
t¼1

Nðxtlmt; ð1 2 vÞ·s 2Þ

�
Y
t[M

Nðmtlm;v·s 2Þ·Nðmln;k·s 2Þ·G21ðs 2la;bÞ

/ ðs22Þ
N
2
þ

rþ1
2

þ
1
2
þðaþ1Þ

� exp 2s22

XN
t¼1

ðxt 2 mtÞ
2

2·ð1 2 vÞ
þ

X
t[M

ðmt 2 mÞ2

2v

2
66664

0
BBBBB@

þ
ðm 2 nÞ2

2k
þ b

3
77775
1
CCCCA ¼ G21 s 2

% ��� N þ r

2
þ 1

þa;

XN
t¼1

ðxt 2 mtÞ
2

2·ð1 2 vÞ
þ

X
t[M

ðmt 2 mÞ2

2v

þ
ðm 2 nÞ2

2k
þ b

&
ðA7Þ
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A.3. Complete conditional distribution for h

pðhl– Þ / pðzlhÞ·pðhÞ /
YN
t¼0

{h·dðzt 2 1Þ

þ ð1 2 hÞ·dðztÞ}·hshth21·ð1 2 hÞsh2shth21

/ hshthþr21·ð1 2 hÞsh2shthþN2r

¼ Bðhlshth þ r; sh 2 shth þ N 2 r þ 1Þ

ðA8Þ

A.4. Complete conditional distribution for v

The CCD for v is only known to a constant:

pðvl– Þ / pðxlm;s 2
;vÞ·pðmlz;m;s 2

;vÞ·pðvÞ

/
YN
t¼1

Nðxtlmt; ð1 2 vÞ·s 2Þ

Y
t[M

Nðmtlm;v·s 2Þ·Bðvlsv; tvÞ

ðA9Þ

A.5. Complete conditional distribution for mN11

A.6. Complete conditional distribution for

qt 5 (mt,zt), t 5 0,1,…,N

The CCD of qt is slightly different for t ¼ 0 and

t . 0 :

pðq0l– Þ / pðm1lm0; z0;m;s
2
;vÞ·pðz0lhÞ

¼ pðm0; z0lm1;uÞ ¼ pðm0; z0l– Þ ðA11Þ

pðqtl– Þ / pðxtlmt;s
2
;vÞ·pðmtlmt21; zt21;m;s

2
;vÞ

·pðmtþ1lmt; zt;m;s
2
;vÞ·pðztlhÞ

¼ pðmt; ztlxt;mt21;mtþ1; zt21; uÞ

¼ pðmt; ztl– Þ ðA12Þ

By definition of conditional probability, the CCD

of qt can be written as the product of the CCD of zt

and the distribution of mt conditional on all

observations, parameters and latent variables with

the exception of zt; which is obtained using the law

of total probability:

pðqtl– Þ ¼ pðztl– Þ·pðmtlx;mðtÞ; zðtÞ;uÞ

¼ pðztl– Þ·
ð

pðmt; ztl– Þdzt ðA13Þ

Given m; zt is a deterministic, binary function of mt

and mtþ1; being equal to zero if and only if mt ¼ mtþ1

and to one otherwise. Hence, the CCD of zt can be

written as:

pðztl– Þ ¼ pðztlmt;mtþ1Þ ¼
dð0Þ if mt ¼ mtþ1

dð1Þ if mt – mtþ1

(

ðA14Þ

The conditional distribution pðmtlx;mðtÞ; zðtÞ; uÞ is

easily obtained for t ¼ 0 :

pðmNþ1l– Þ ¼
ð1 2 zNÞ·dðmNþ1 2 mNÞ þ zN·NðmNþ1lm;v·s 2Þ

ð1 2 zNÞ
Ð
dðmNþ1 2 mNÞdmNþ1 þ zN

Ð
NðmNþ1lm;v·s 2ÞdmNþ1

¼ ð1 2 zNÞ·dðmNþ1 2 mNÞ þ zN·NðmNþ1lm;s 2Þ ðA10Þ

pðm0lx;mð0Þ; zð0Þ;uÞ ¼
ð

pðm0; z0l– Þdz0 ¼
ð

pðm0; z0lm1;uÞdz0 ¼

Ð
pðm1lm0; z0;m;s

2;vÞ·pðz0lhÞdz0ÐÐ
pðm1lm0; z0;m;s

2;vÞ·pðz0lhÞdm0dz0

¼
ð1 2 hÞ·dðm1 2 m0Þ þ h·Nðm0lm;s 2Þ

ð1 2 hÞ·
Ð
dðm1 2 m0Þdm0 þ h·

Ð
Nðm0lm;s 2Þdm0

¼ ð1 2 hÞ·dðm1 2 m0Þ þ h·Nðm0lm;s 2Þ ðA15Þ
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For t . 0; it is simpler to consider separately the

two cases zt21 ¼ 0 and zt21 ¼ 1: The case zt21 ¼ 0 is

simple, since it means that mt21 ¼ mt: Since mt21 is

also known, the conditional distribution pðmtlx;mðtÞ;

zðtÞ;uÞ is necessarily a Dirac distribution centered on

mt21 :

pðmtlx;mðtÞ;zðtÞ;u;zt21 ¼ 0Þ ¼ dðmt21 2mtÞ ðA16Þ

In the case zt21 ¼ 1;pðmtlx;mðtÞ;zðtÞ;uÞ can be

written as:

From the properties of the Dirac distribution, the

following proposition is immediate:

ð
Nðxtlmt; ð1 2 vÞ·s 2Þ·Nðmtlm;v·s 2Þ

� dðmtþ1 2 mtÞdmt

¼ Nðxtlmtþ1; ð1 2 vÞ·s 2Þ·Nðmtþ1lm;v·s 2Þ

ðA18Þ

Combining (A2) and (A18), we can simplify the

denominator of (A17) and obtain:

Once again, using the properties of the Dirac

distribution:

Nðxtlmt; ð1 2 vÞs 2Þ·Nðmtlm;vs 2Þ·dðmtþ1 2 mtÞ

¼ Nðxtlmtþ1; ð1 2 vÞs 2Þ·Nðmtþ1lm;vs 2Þ

� dðmtþ1 2 mtÞ ðA20Þ

This allows us to divide both numerator and

denominator by Nðmtþ1lm;vs 2Þ and obtain:

pðmtlx;mðtÞ;zðtÞ;u;zt21 ¼ 1Þ

¼
ð12hÞ·Nðxtlmtþ1; ð12vÞ·s2Þ·dðmtþ1 2mtÞ

ð12hÞ·Nðxtlmtþ1; ð12vÞ·s2Þþh·Nðxtlm;s2Þ

þ
h·Nðxtlmt; ð12vÞ·s2Þ·Nðmtlm;v·s2Þ

ð12hÞ·Nðxtlmtþ1;ð12vÞ·s2Þþh·Nðxtlm;s2Þ

ðA21Þ

We can then use (A3) to express (A21) as a mixture

of two distributions:

pðmtlx;mðtÞ;zðtÞ;u;zt21 ¼ 1Þ

¼ ð12hpÞ·dðmtþ1 2mtÞþhp

�Nðmtlð12vÞmþvxt;vð12vÞs2Þ ðA22Þ

where

hp¼ 1þ
12h

h
£
Nðxtlmtþ1;ð12vÞ·s2Þ

Nðxtlm;s2Þ

" #21

ðA23Þ

pðmtlx;mðtÞ; zðtÞ; u; zt21 ¼ 1Þ

¼
Nðxtlmt; ð1 2 vÞs 2Þ·Nðmtlm;vs 2Þ½ð1 2 hÞ·dðmtþ1 2 mtÞ þ h·Nðmtþ1lm;vs 2Þ�

Nðmtþ1lm;vs 2Þ½ð1 2 hÞ·Nðxtlmtþ1; ð1 2 vÞs 2Þ þ h·Nðxtlm;s 2Þ�
ðA19Þ

pðmtlx;mðtÞ; zðtÞ; u; zt21 ¼ 1Þ ¼
ð

pðmt; ztl– Þdzt

¼

Ð
pðxtlmt;s

2;vÞ·Nðmtlm;vs 2Þ·pðmtþ1lmt; zt;m;s
2;vÞ·pðztlhÞdztÐ Ð

pðxtlmt;s
2;vÞ·Nðmtlm;vs 2Þ·pðmtþ1lmt; zt;m;s

2;vÞdmt

' (
pðztlhÞdzt

¼
Nðxtlmt; ð1 2 vÞs 2Þ·Nðmtlm;vs 2Þ½ð1 2 hÞ·dðmtþ1 2 mtÞ þ h·Nðmtþ1lm;vs 2Þ�Ð
Nðxtlmt; ð1 2 vÞs 2Þ·Nðmtlm;v·s 2Þ½ð1 2 hÞ·dðmtþ1 2 mtÞ þ h·Nðmtþ1lm;vs 2Þ�dmt

ðA17Þ
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Combining (A16) and (A22) we obtain:

pðmtlx;mðtÞ;zðtÞ;uÞ

¼ ð12 zt21Þ·dðmt 2mt21Þ

þ zt21·½ð12hpÞ·dðmtþ1 2mtÞ

þhp ·Nðmtlð12vÞ·m

þv·xt;v·ð12vÞ·s2Þ� ðA24Þ
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précipitations et de débits de l’Afrique de l’Ouest. Journal of

Hydrology 110, 349–367.

Hurst, H.E., 1951. Long-term storage capacity of reservoirs.

Transactions of ASCE 116, 770–779.

Kehagias, A., 2004. A hidden Markov Model Segmentation

procedure for hydrological and environmental times series,

Stoch. Env. Res. and Risk Ass., 18(2), 117–130.

Klemes, V., 1974. The Hurst phenomena: a puzzle? Water

Resources Research 10(4), 675–688.
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change-point analysis in hydrometeorological time series, part

1, the normal model revisited. Journal of Hydrology 235,

221–241.

Perreault, L., Bernier, J., Bobée, B., Parent, É., 2000b. Bayesian
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State University.

Salas, J.D., Boes, D.C., 1980. Shifting level modeling of hydrologic

series. Advances in Water Resources 3, 59–63.

Salas, J.D., Boes, D.C., Pegram, G.G.S., Yevjevich, V., 1979. The

Hurst phenomenon as a preasymptotic behavior. Journal of

Hydrology 44, 1–15.

Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L., 1980. Applied

modeling of hydrologic time series, Water Resources Publi-

cations, Littleton, CO.

Sharma, A., O’Neill, R., 2002. A nonparametric approach for

representing interannual dependence in monthly streamflow

sequences. Water Resources Research 38(7), 2105–2117.

Spiegelhalter, D.J., Thomas, A., Best, N.G., 1996. Computation on

Bayesian graphical models. In: Bernardo, J.M., Berger, J.O.,

Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics 5,

Oxford University Press, New York, pp. 407–425.

Sveinsson, O.G.B., Salas, J.D., 2001. Stochastic modeling and

simulation of the great lakes net basin supplies based on

univariate and multivariate shifting mean (with persistence),

Consulting Report for Hydro-Québec, Colorado State Univer-
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